Soil Property Mapping Using Fuzzy Membership Derived by Fuzzy c- Means (fcm) Clustering

نویسندگان

  • Lin Yang
  • A-xing Zhu
  • Chengzhi Qin
  • Baolin Li
چکیده

This paper explores the use of fuzzy membership values generated by fuzzy c-means clustering (FCM) method to predict soil properties over space. A weighted average model was used on fuzzy membership to get soil properties. To validate the efficiency of this model, it was then compared with a multiple linear regression model between the soil property and terrain attributes. Four indices were calculated to evaluate the performance of these two models: correlation coefficient between predicted and observed values, mean absolute error (MAE), root mean square (RMSE) and agreement coefficient (AC). The research was tested in a watershed located in Heilongjiang province China. Two soil properties were chosen: A-horizon organic matter and soil depth. The results showed that the fuzzy membership weighted model produced reasonably better performance than the regression model by using the same modeling points, while linear regression models were limited in the study area. Although the R of regression functions were very high, the functions constructing by modeling points may not suit for other points of the area. Therefore, we can conclude that weighted average model using fuzzy membership was an effective way to predict soil properties, and it is more extrapolatable than the regression approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Refining membership degrees obtained from fuzzy C-means by re-fuzzification

Fuzzy C-mean (FCM) is the most well-known and widely-used fuzzy clustering algorithm. However, one of the weaknesses of the FCM is the way it assigns membership degrees to data which is based on the distance to the cluster centers. Unfortunately, the membership degrees are determined without considering the shape and density of the clusters. In this paper, we propose an algorithm which takes th...

متن کامل

A clustering approach for mineral potential mapping: A deposit-scale porphyry copper exploration targeting

This work describes a knowledge-guided clustering approach for mineral potential mapping (MPM), by which the optimum number of clusters is derived form a knowledge-driven methodology through a concentration-area (C-A) multifractal analysis. To implement the proposed approach, a case study at the North Narbaghi region in the Saveh, Markazi province of Iran, was investigated to discover porphyry ...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Bias-correction fuzzy clustering algorithms

Keywords: Cluster analysis Fuzzy clustering Fuzzy c-means (FCM) Initialization Bias correction Probability weight a b s t r a c t Fuzzy clustering is generally an extension of hard clustering and it is based on fuzzy membership partitions. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Numerous studies have presented various generalizations o...

متن کامل

Sensitivity of digital soil maps based on FCM to the fuzzy exponent and the number of clusters

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Keywords: Fuzzy c-means clustering Fuzzy validity function Digital soil mapping Sensit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007